This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum"
#include <bits/stdc++.h>
using namespace std;
const long long MOD = 998244353;
#include "../../../data_structure/sequence/lazy_segment_tree.hpp"
#include "../../../other/monoids/linear.hpp"
#include "../../../other/monoids/affine_sum.hpp"
int main(){
int N, Q;
cin >> N >> Q;
vector<affine_sum> a(N);
for (int i = 0; i < N; i++){
a[i].cnt = 1;
cin >> a[i].sum;
}
lazy_segment_tree<affine_sum, linear> ST(a, op, mp, composite, affine_sum(), linear());
for (int i = 0; i < Q; i++){
int t;
cin >> t;
if (t == 0){
int l, r, b, c;
cin >> l >> r >> b >> c;
ST.range_apply(l, r, linear(b, c));
}
if (t == 1){
int l, r;
cin >> l >> r;
cout << ST.range_fold(l, r).sum << endl;
}
}
}
#line 1 "test/library_checker/data_structure/range_affine_range_sum.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum"
#include <bits/stdc++.h>
using namespace std;
const long long MOD = 998244353;
#line 2 "data_structure/sequence/lazy_segment_tree.hpp"
/**
* @brief 遅延セグメント木
*/
template <typename T, typename F>
struct lazy_segment_tree{
int N;
vector<T> ST;
vector<F> lazy;
function<T(T, T)> op;
function<T(F, T)> mp;
function<F(F, F)> comp;
T E;
F id;
lazy_segment_tree(int n, function<T(T, T)> op, function<T(F, T)> mp, function<F(F, F)> comp, T E, F id): op(op), mp(mp), comp(comp), E(E), id(id){
N = 1;
while (N < n){
N *= 2;
}
ST = vector<T>(N * 2 - 1, E);
for (int i = N - 2; i >= 0; i--){
ST[i] = op(ST[i * 2 + 1], ST[i * 2 + 2]);
}
lazy = vector<F>(N * 2 - 1, id);
}
lazy_segment_tree(vector<T> &A, function<T(T, T)> op, function<T(F, T)> mp, function<F(F, F)> comp, T E, F id): op(op), mp(mp), comp(comp), E(E), id(id){
int n = A.size();
N = 1;
while (N < n){
N *= 2;
}
ST = vector<T>(N * 2 - 1, E);
for (int i = 0; i < n; i++){
ST[N - 1 + i] = A[i];
}
for (int i = N - 2; i >= 0; i--){
ST[i] = op(ST[i * 2 + 1], ST[i * 2 + 2]);
}
lazy = vector<F>(N * 2 - 1, id);
}
void push(int i){
if (i < N - 1){
lazy[i * 2 + 1] = comp(lazy[i * 2 + 1], lazy[i]);
lazy[i * 2 + 2] = comp(lazy[i * 2 + 2], lazy[i]);
}
ST[i] = mp(lazy[i], ST[i]);
lazy[i] = id;
}
void range_apply(int L, int R, F f, int i, int l, int r){
push(i);
if (r <= L || R <= l){
return;
} else if (L <= l && r <= R){
lazy[i] = f;
push(i);
} else {
int m = (l + r) / 2;
range_apply(L, R, f, i * 2 + 1, l, m);
range_apply(L, R, f, i * 2 + 2, m, r);
ST[i] = op(ST[i * 2 + 1], ST[i * 2 + 2]);
}
}
void range_apply(int L, int R, F f){
range_apply(L, R, f, 0, 0, N);
}
T range_fold(int L, int R, int i, int l, int r){
push(i);
if (r <= L || R <= l){
return E;
} else if (L <= l && r <= R){
return ST[i];
} else {
int m = (l + r) / 2;
return op(range_fold(L, R, i * 2 + 1, l, m), range_fold(L, R, i * 2 + 2, m, r));
}
}
T range_fold(int L, int R){
return range_fold(L, R, 0, 0, N);
}
T all(){
push(0);
return ST[0];
}
};
#line 2 "other/monoids/linear.hpp"
struct linear{
long long a, b;
linear(){
a = 1;
b = 0;
}
linear(int a, int b): a(a), b(b){
}
};
linear composite(linear A, linear B){
return linear(A.a * B.a % MOD, (A.b * B.a + B.b) % MOD);
}
int value(linear A, int x){
return (A.a * x + A.b) % MOD;
}
#line 2 "other/monoids/affine_sum.hpp"
struct affine_sum{
int cnt;
long long sum;
affine_sum(): cnt(0), sum(0){
}
};
affine_sum op(affine_sum A, affine_sum B){
A.cnt += B.cnt;
A.sum += B.sum;
A.sum %= MOD;
return A;
}
affine_sum mp(linear f, affine_sum A){
A.sum = (A.sum * f.a + A.cnt * f.b) % MOD;
return A;
}
#line 8 "test/library_checker/data_structure/range_affine_range_sum.test.cpp"
int main(){
int N, Q;
cin >> N >> Q;
vector<affine_sum> a(N);
for (int i = 0; i < N; i++){
a[i].cnt = 1;
cin >> a[i].sum;
}
lazy_segment_tree<affine_sum, linear> ST(a, op, mp, composite, affine_sum(), linear());
for (int i = 0; i < Q; i++){
int t;
cin >> t;
if (t == 0){
int l, r, b, c;
cin >> l >> r >> b >> c;
ST.range_apply(l, r, linear(b, c));
}
if (t == 1){
int l, r;
cin >> l >> r;
cout << ST.range_fold(l, r).sum << endl;
}
}
}