cp_library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub SSRS-cp/cp_library

:heavy_check_mark: test/library_checker/data_structure/range_affine_point_get.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_point_get"
#include <bits/stdc++.h>
using namespace std;
const long long MOD = 998244353;
#include "../../../data_structure/sequence/dual_segment_tree.hpp"
#include "../../../other/monoids/linear.hpp"
int main(){
  int N, Q;
  cin >> N >> Q;
  vector<linear> a(N);
  for (int i = 0; i < N; i++){
    a[i].a = 0;
    cin >> a[i].b;
  }
  dual_segment_tree<linear> ST(a, composite, linear());
  for (int i = 0; i < Q; i++){
    int t;
    cin >> t;
    if (t == 0){
      int l, r, b, c;
      cin >> l >> r >> b >> c;
      ST.range_apply(l, r, linear(b, c));
    }
    if (t == 1){
      int p;
      cin >> p;
      cout << ST[p].b << endl;
    }
  }
}
#line 1 "test/library_checker/data_structure/range_affine_point_get.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_point_get"
#include <bits/stdc++.h>
using namespace std;
const long long MOD = 998244353;
#line 2 "data_structure/sequence/dual_segment_tree.hpp"
/**
 * @brief 双対セグメント木 (びーと木)
*/
template <typename T>
struct dual_segment_tree{
  int N;
  vector<T> ST;
  function<T(T, T)> f;
  T E;
  dual_segment_tree(int n, function<T(T, T)> f, T E): f(f), E(E){
    N = 1;
    while (N < n){
      N *= 2;
    }
    ST = vector<T>(N * 2 - 1, E);
  }
  dual_segment_tree(vector<T> A, function<T(T, T)> f, T E): f(f), E(E){
    int n = A.size();
    N = 1;
    while (N < n){
      N *= 2;
    }
    ST = vector<T>(N * 2 - 1, E);
    for (int i = 0; i < n; i++){
      ST[N - 1 + i] = A[i];
    }
  }
  void push(int i){
    if (i < N - 1){
      ST[i * 2 + 1] = f(ST[i * 2 + 1], ST[i]);
      ST[i * 2 + 2] = f(ST[i * 2 + 2], ST[i]);
      ST[i] = E;
    }
  }
  T operator [](int k){
    int v = 0;
    for (int i = N / 2; i >= 1; i >>= 1){
      push(v);
      if ((k & i) == 0){
        v = v * 2 + 1;
      } else {
        v = v * 2 + 2;
      }
    }
    return ST[v];
  }
  void range_apply(int L, int R, T x, int i, int l, int r){
    if (r <= L || R <= l){
    } else if (L <= l && r <= R){
      ST[i] = f(ST[i], x);
    } else {
      push(i);
      int m = (l + r) / 2;
      range_apply(L, R, x, i * 2 + 1, l, m);
      range_apply(L, R, x, i * 2 + 2, m, r);
    }
  }
  void range_apply(int L, int R, T x){
    range_apply(L, R, x, 0, 0, N);
  }
};
#line 2 "other/monoids/linear.hpp"
struct linear{
  long long a, b;
  linear(){
    a = 1;
    b = 0;
  }
  linear(int a, int b): a(a), b(b){
  }
};
linear composite(linear A, linear B){
  return linear(A.a * B.a % MOD, (A.b * B.a + B.b) % MOD);
}
int value(linear A, int x){
  return (A.a * x + A.b) % MOD;
}
#line 7 "test/library_checker/data_structure/range_affine_point_get.test.cpp"
int main(){
  int N, Q;
  cin >> N >> Q;
  vector<linear> a(N);
  for (int i = 0; i < N; i++){
    a[i].a = 0;
    cin >> a[i].b;
  }
  dual_segment_tree<linear> ST(a, composite, linear());
  for (int i = 0; i < Q; i++){
    int t;
    cin >> t;
    if (t == 0){
      int l, r, b, c;
      cin >> l >> r >> b >> c;
      ST.range_apply(l, r, linear(b, c));
    }
    if (t == 1){
      int p;
      cin >> p;
      cout << ST[p].b << endl;
    }
  }
}
Back to top page